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Abstract-Weight functions permit to represent stress intensity factors as weighted averages of the
externally impressed boundary tractions and body forces. In this paper the relevant weight functions
of all three modes are represented in closed form with the aid of elementary transcendentals.
Their dcrivation as displaccmcnts of fundamental ficlds is simple and without recourse to integral
transforms of any kind.

I. INTRODUCTION

We shall be concerned with the calculation of stress intensity factors within the realm of
the classical theory of linear elasticity of isotropic bodies. Poisson's parameter v and the
shear modulus Jl. will be used to describe the elastic material. In the most general situation
one considers an elastic body V with a crack C, such as shown in Fig. 1. Let V be subjected
to distributed body forces of density F and let the surface S of V (the faces of C included)
be under distributed tractions T. F and T are vectors, forming fields throughout V and
along S respectively. Let the system of these fields be self-equilibrated. The body V responds
to them with a field of displacements, strains and stresses. Along the edge of the crack the
stress field is generally unbounded and characterized by three stress intensity factors k l (Q),
k2(Q) and k 3(Q) at a generic point Q of the edge. (The frequently used "engineering"
intensity factors k.. kn and kill are obtained by multiplying the kj by .;n.) For a fixed Q
the factor kj(Q) is a linear functional of the fields ofF and T; mindful of the representation
of linear functionals in certain function spaces one would expect a representation

(1.1)

where W*, W*' stand for vector fields in V and on S respectively. The symbol (A, B)
denotes the scalar product of vectors A and B. W* and W·' depend on the field location
p, on Q as a parameter and on the choice of j. They do not depend on F and T. We call
them weight functions and write

W* == Wj*(P, Q), W*' == Wj*'(P, Q) (1.2)

Fig. I.
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Fig. 2.
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more explicitly. Once available the weight functions can be used to calculate the stress
intensity factors for all possible load systems F, T.

Formula (1.1) reduces to a much simpler form for plane strain deformation. Figure 2
shows an elastic region D in the Cartesian (x,y) plane with a crack along the interval (a, b)
of the x-axis. Let D be subject to tractions only, and in particular to a generic pressure
distributionp(x) along the crack faces. In this case the stress intensity factor k, at the crack
tip b can be represented by

k I = j2 rb

p(x)m(x) dx
1t Ju

where the "crack face weight function" m(x) satisfies the normalization condition

lim (b-X)I/2· m(X) = 1.
x-b-O

(1.3)

(1.4)

In the case of the Griffith crack (D is the full plane with the crack as shown in Fig. 2)
Muskhelishvili's theory permits to determine the field responding to p(x) in closed form
with the aid of Cauchy integrals. Retrieving k, from that field one finds

J x-a
m(x) = (b-a)(b-x)' (1.5)

Formula (1.3) can be generalized so as to yield k, and k2 under more general conditions of
loading.

It is trivial to interpret weight functions as influence functions. As an example we
derive from (1.3) that

J2 m(l) = k ,
7t

for p(x) = ~ (x- I). (1.6)

Here ~ stands for Dirac's function and describes a concentrated load at location x = I. The
interpretation (1.6) makes m(x) an abstract from infinitely many fields. For each I of the
interval (a,b) there is a field responding to h(X-I); this field yields a k) and thus the
particular value ofm(x) at x = I. Fortunately it is not necessary to procure weight functions
in this manner. More powerful methods are available.

Let us label as "general" any method by which we determine the kj in two steps:
(1) the field of displacements and stresses in V in response to F, T is calculated; (2) from
this field we retrieve the kj for any wanted edge point Q. If the field in V can be found for
generic distributions of F and T then formulas of the type (1.1) follow suit. The same can
be achieved if a general method permits to analyse the response to concentrated loads,
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provided that the points of load application are generically prescribed. If we arc content
with information on stress intensity factors only, then a general method provides more than
we want. It is conceivable that there are methods of crack analysis which yield stress
intensity factors, but nothing more. We shall denote them as "special". It is natural to
expect the effort to implement a special method to be much smaller than the effort for a
general one.

The literature of stress intensity factors is based to a considerable extent on general
methods, applied to distributed or concentrated loads. We mention [I, 5, 6, 8, 16-18] in
particular. The penny-shaped crack is no exception. Apart from [4] most of its extensive
literature is about general methods in one form or another. The crack can be considered as
a limit case of oblate spheroidal voids. Such voids are analysed in Neuber's book[9] with
the aid of oblate spheroidal coordinates. Applying the latter and Neuber's general formulae
Sack[l5] determined the energy of deformation for a crack opened by uniform pressure. At
about the same time Sneddon[17] found, among other results,

(1.7)

for a crack of radius a, opened by the pressure Po. His analysis employs Hankel transforms
and dual integral equations. Following his example Barenblatt[l] applied Hankel transforms
in order to deal with an axisymmetric pressure distribution under the crack faces. Let
cylindrical coordinates r, 0 and z be associated with rectangular Cartesian coordinates x, Y
and z through x = r cos 0, y = r sin O. For a crack defined by z = 0, r < a (Fig. 3) and
subject to a pressure distribution p(r) Barenblatt finds

The furthest reaching result obtained by a general method[5, 18] seems to be

(1.8)

1 f2n fa
kl(O') = 2" M(r,O,O')p(r,O)r dr dO

7t 0 0
with

(1.9)

for a crack under a general pressure distribution p(r, 0); note that k, depends on the angle
0' of the edge point.

Many other cases of louding uppe<lr in [6, 16. 18]. None of them m<ltches the
generality of (1.9). A comprehensive description of W"', W"" in (1.1) for the case of the
penny-shaped crack and all three modes of deformation is still missing.

z
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About the same can be said for the literature on the half-plane crack (Fig. 4). With
the exception of [4, 12] the emphasis has been on general methods. Special concentrated
loads are considered in [6] and dealt with the aid of functional transforms, in particular
Kantorovich-Lebedev transforms for modes II and III. A recent study ofcrack faces under
concentrated loads is given in [8]. The analysis in [12] covers the case of body forces and
provides information for the weight functions of mode I in explicit form. (The main subject
of [12] is the perturbation of crack front position; here we refer to it only in the context of
half-plane crack analysis.)

In the sequel, a special method will lead us to the relevant weight functions of all modes
for both the penny-shaped and the half-plane crack. No recourse to integral transforms
will be taken and nothing more complicated than harmonic functions, elementary­
transcendental in their variables will be met. All weight functions will be given in closed
form.

The special method is not new. It makes use ofa particular property ofweight functions.
Introduced, discussed and applied in [2-4, 7, 10-14], the property identifies the vector
fields W *, W *' in (1.1) as the displacements of one field of elastic deformation, also known
as fundamental field. Here is the place to refer to [12] again. The paper's method is special
and uses features of weight function theory. A fundamental field displays neither body
forces nor surface tractions. It has unbounded displacements and infinite strain energy.
This admits its existence outside the family of those fields to which the uniqueness theorem
of elasticity applies. The fundamental fields of a given elastic body with one or more cracks
form a linear manifold. They stay fundamental upon multiplication of all field quantities
by the same scalar; the sum of two fields is also fundamental. To achieve our goal it will
suffice to find and describe certain relevant fundamental fields.

2. REGULAR FIELDS. PRELIMINARIES OF FUNDAMENTAL FIELDS

We begin with the commonly known asymptotic relations for displacements and
stresses near an edge point of the crack. It is convenient to list them for the configuration
of the half-plane crack (Figs 4 and 5). In the frame of a rectangular Cartesian coordinate
system with axes x, y and z, the crack occupies the left half of the (x,y) plane, x < O. The
crack faces C+ and C- can be distinguished by qJ = n, -n respectively where p and qJ
represent polar coordinates in the (x,z) plane..We introduce

ex = fiP· cos qJ/2,

Yc = cos qJ/2 cos 3qJ/2,

p= fiP .sin qJ/2

Ys = sin qJ/2 sin 3qJ/2.

(2.1)

(2.1a)

Let u, v and w denote elastic displacements in the direction of x, y and z respectively and
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let a" tn' etc. denote the stresses in the familiar manner. The asymptotic relations for u, I'

and II' are given by

2JI(U - un) ""' k ,a[2( I - v) -cos2 4?/2] + k "fJ[2 (I - v) + cos 2 4?/2]

2Jl(w-wo) ""' kd3[2(I-v)-cos 2 4?/2]-k2cx[2(1-v)-2+cos 2 4?/2] (2.2)

Jl(v-vo) ""' -k3{3·

Here the stress intensity factors k
"

k" and k) shall be smooth functions of)'; so shall the
(suitably chosen) terms Un, Vo and 11'0' Strains follow suit, and so do the stresses. The latter
are governed by

ax""' [k)IX(I-Ys)-k 2{3(2+yc)]/2p

a: ""' [k I IX(I+Ys)+k 2{3Yc]/2p; ay ""' v(ux+aJ

t x: ""' [k l {3YC+ k 2 IX (I-Ys)]J2p

tJ'= ""' -k3IX/2p, 't'yx ""' k 3f3/2p.

All preceding relations have the general form

w ""' p"f(y, 4?);

it applies to the approach p -+ 0 and shall mean that

(2.3)

(2.4)

(2.5)

Let YI < Y < Y2 be some segment of the edge of the crack. A field of displacements, strains
and stresses in the structure of the half-plane crack will be called regular along that segment
if the relations (2.2) and (2.3) hold with suitable uo, vo, Wo; k I, k 2, k 3 along that segment.
We call the field regular if the segment coincides with the whole edge. These definitions can
be extended to other elastic structures.

For our purposes it will be preferable to replace some of the standard formulas in (2.2)
and (2.3) by equivalents of the form

(2.7)

Here and in the sequel we use coordinate denotations as subscripts in order to indicate
partial derivatives; stress denotations a... t x ," etc. are exempt. In (2.6) A and B are related
to one another by

(2.8)

and to Vby

(2.9)

If one replaces """''' by "=" in (2.6) and (2.7) one obtains Muskhelishvili's general
representation of plane strain fields without body forces; "plane strain" refers to the
(x,z) plane. V is the Airy stress function, A+iB is analytic in x+iz and identical with
Muskhelishvili's 4? In (2.6) and (2.7) A, B and V are given by

2A = k l cx+k2{3; 2B = k 1P-k 2IX
V = k l VI +k2V 2 with 3V t = IX

3
, V 2 = _IX 2P·

(2.10)
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The functions a and IJ play an important role here and later. The derivations in (2.6) and
(2.7) are easily carried out if we observe

p, = P(P, = cos cp; p, = - P(P,· = Sin cpo

For the convenience of the reader we also list

a2= p(l +cos lfJ) = p+x; 132 = p(l-cos lfJ) = p-x

afJ = p sin lfJ = Z

ax = f3z = a/2p; az = -Px = P/2p

(2.11 )

(2.12)

(2.12a)

and, for later use,

2Ulx = (l +cos lfJ)a, 2Ulz = (1 +cos lfJ)f3

U2z = U'x -2a,
(2.13)

4pV 1xx = (I +cos lfJ+2 sin 2 lfJ)a; 4pV lxz = (-I-cos lfJ+2 sin 2 lfJ)fJ

U2xx = - U1XZl U2xz = Ulxx-a/p.
(2.13a)

Now we introduce a different type of field whose quantities we mark by an asterisk.
We set first

and define

a* = ax,
V I* = U lx ,

13* = f3x;
U2* = U2x

(2.14)

The displacements of the field shall satisfy the asymptotic relations

2J1.u* '" -Ux*+4(l-v)A*, 2J1.w* '" -U:+4(l-v)B*

J1.v* '" -m3P*
(2.15)

mj, m2, m3 are coefficients, independent of x and z, but permitted to depend on y; they bear
no relation to the function m(x) in (1.3)-(1.6). We assume that mj, m2 and m3 are smoothly
defined along the whole edge and that at least one of them does not vanish identically. The
stresses of the field are implied by (2.15). We write

u: '" Uz~,

u_~ '" v(u:+un
u: '" Ux~, t:z '" - Ux~

t:z '" -m3P:, t:x '" -m3Px*.
(2.16)

If y' denotes an edge point where one of the mk does not vanish then the field has infinite
energy of deformation in any neighborhood ofy'. A field in the structure of the half-plane
crack will be called ordinary fundamental if the following conditions are met: (a) for
p -+ 0 the asymptotic relations (2.15) and (2.16) hold along the edge with suitably chosen
coefficients mk in accord with the assumptions above; (b) there are no body forces; no
tractions appear on C+, C- ; (c) the stresses go to zero as p -+ 00. Extending the well-known
mode distinction of regular fields we shall speak of an ordinary fundamental field of
mode I if m. :F 0, m2 = 0, mJ = O. In similar vein we define modes II and III.

Ordinary fundamental fields form a linear manifold. It is not large enough to provide
all cases of important weight functions. Certain limits of ordinary fundamental fields have
to be adjoined. The mode distinction will follow suit.

Analogously fundamental fields for other cracked structures can be defined. Before we
do this for the case of the penny-shaped crack we have to consider an important line integral



Weight functions and fundamental fields for the penny-shaped and the half-plane crack in three-space 63

involving both a regular and an ordinary fundamental field. We exclude from the structure
of the half-plane crack the interior of a cylinder p = constant. The remaining elastic body
displays certain tractions on the surface p = constant; one set of tractions with components
X, Y and Z is due to a regular field with displacements u, v and Ii'; another set with
components X*, y* and Z* comes from an ordinary fundamental field with displacements
u*, 1'* and 11'*. Let 2 be the intersection of the cylinder with a plane y = constant, as shown
in Fig. 5. Along 2 we take the integral

I(p,y) = fn (uX*+vY*+wZ*-u*X-v*Y-w*Z)p dcp, (2.17)

At least in an asymptotic sense the tractions X*, y* and Z* on 2 have no force resultant;
more precisely

lo(p,y) =f (uoX*+voY*+woZ*)p'dcp-+O
!I'

for any set of constants uo, 1'0, 11'0' To the difference

as p-+O (2.18)

I(p,y)-/o(p,y) = fn [(u-uo)X*+(v-vo)y* +(11'- wo)Z*-u* X -1'* Y - w*Z]p dcp

one can apply all the asymptotic relations for the regular and the ordinary fundamental
field. It turns out that the products pXu*, pX*(u-uo), etc. are asymptotically independent
of p; their leading terms are functions of cp alone. Consequently 1-/0 has a finite limit as
p -+ O. Due to (2.18) the same limit is taken by I(p,y) alone as p -+ O. We denote this limit
by I(y). Its detailed evaluation in Appendix B yields

(2.19)

It is useful to introduce new coefficients mt by setting

m3 = -jJ.J2mt (2.20)

this permits us to rewrite (2.19) in the form

(2.21)

The coefficients mt have a simple geometric interpretation. It follows from (2.14) and (2.15)
that on C+

JPu* -+m!, JPV* -+ -mt, JPw* -+mf as p -+0. (2.22)

Henceforth the mt will be referred to as the geometric intensity coefficients of the ordinary
fundamental field.

In its restriction to plane strain (k3 = 0, m3 = 0) the result (2.19) was first represented
in [2, 3]. Appendix B gives a complete derivation of (2.19) for the convenience of the
reader.

Turning now to the configuration of the penny-shaped crack (Fig. 3) we shall take
advantage of several coordinate systems. A Cartesian rectangular system with axes x, y
and z will be useful when dealing with general aspects of harmonic potentials, describing
fields of elastic deformation. The displacements will be denoted by u, v and wand the
stresses by (1" f.,y, etc. Cylindrical coordinates are convenient for geometric reasons. The
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relations x = r cos e, Y = r sin ewere already mentioned. We shall have to consider elastic
displacements u' in a radial and v' in a tangential direction. These are related to u and v by

u' = u cos e+v sin e, v' = -u sin e+v cos e. (2.23)

The stresses associated with cylindrical coordinates will be denoted by (1" (18, (1:; f r8, f",

f8z' In order to describe the asymptotic behavior of the field quantities near the edge of the
crack we employ local polar coordinates p, qJ in analogy to their use for the half-plane
crack (Fig. 4). But this time we define

pei'P = r-a+iz. (2.24)

In the system of cylindrical coordinates both the first order derivatives of u', v' and wand
the ratios u'/r, - v'/2r contribute to the strains. For the asymptotics p -+ 0 the tenns u'/r
and v'/2r can be neglected so that plane strain deformation with regard to each meridional
half-plane e= constant prevails. (In this context we count a mode III defonnation as one
of plane strain.) Under these circumstances the asymptotic relations (2.6) and (2.15) of the
half-plane crack can be retained after some nominal changes in order to define regular and
fundamental fields for the penny-shaped crack. In the displacement fonnulas one replaces
u by the radial and v by the tangential displacement. Stress symbols change by replacing x
by rand y by ein the subscripts; thus (1x becomes (1" etc. All functions of p, qJ such as ex,
p, Ye, Ys, VI> V2 remain the same. Their x-derivatives are formally replaced by r-derivatives.
This applies in particular to (2.6)-(2.16). The coefficients kj , mk> mt become functions of
e. So do uo, vo, woo After these modifications the definitions of regular and of ordinary
fundamental fields carryover to the structure of the penny-shaped crack. Condition (c) of
the ordinary fundamental field should be replaced by (c'): the stresses go to zero as the
distance from the center of the crack goes to infinity.

The same rules apply to the integral I in (2.17); u and v change into u' and v' and X
and Y into radial and tangential components of traction. Fonnulas (2.19)-(2.22) retain
their meaning accordingly.

It must be emphasized that the result (2.19) is based on the asymptotics for p -+ 0 of
both regular and fundamental fields. For this reason, a check on (2.15) must and will be
made whenever a candidate for an ordinary fundamental field is under consideration. It
will turn out that some special limits of ordinary fundamental fields are regular along
certain open arcs of the crack edge. In this case, a check on (2.2) will be added. For this
particular check it will suffice to show that relations of the fonn

w*-wo '" }Pf3(qJ,8) (2.25)
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exist; (2.25) in turn yields (2.2) and (2.3) by way of the equations of linear elasticity for a
field without body forces.

Although the asymptotic relations (2.2) and (2.3) are commonly accepted, the domain
of their validity remains to be staked out. What restrictions must be set for the distribution
of body forces and boundary tractions in order to ascertain (2.2) and (2.3)? In [3], p. 245,
the lesser problem of plane strain deformation without body forces has been dealt with.
Thc dillicultics to cstablish analogous rcsults for statcs of three-dimcnsional deformation
seem to be formidable. For simplicity we have postulated (2.2) and (2.3) through the concept
of the regular field. In similar vein we have introduced ordinary fundamental fields. The
construction of such fields for penny-shaped and half-plane cracks will be an important
part of this analysis.

3. GENERAL REMARKS ON HARMONIC POTENTIALS OF FUNDAMENTAL FIELDS

Although the penny-shaped crack will be in the center of our analysis, some basic
aspects of a more general crack configuration must be mentioned. Let C be a crack of
generic shape in the plane z = O. C+ , C- will denote its faces on upper and lower z-halfspace
respectively. We denote by r the edge of C and assume that r is a smooth contour. The
domain of the crack is either the inside or the outside of r. We define as an elastic region
the three-dimensional cracked space without r but with C+, C- included and counted as
different entities.

In order to describe certain fields of mode I deformation of the elastic region, a
Boussinesq-Papkovich potential G(x,y, z) can be employed. G is harmonic, i.e.

(3.1)

It generates the displacements

w = -zGzz +2(l-v)Gz (3.2)

and the stresses

(Jx = -21l[(zGxJ: +2vGyy],

(Jy = - 21l[(zGn l + 2vGxx],

(J: = - 211[zG::: - G::l,

Ly: = - 2IlzGy::

LX: = - 2IlzGx::

LX," = - 21l[zGxy: + (I - 2v)Gx.l']·

(3.3)

The field is without body forces. Assuming continuity in the elastic region of G and its
derivatives up to the 3rd order, we may write

w = 2(I-v)G: on C+,C- (3.4)

LX: = 0, on C+,C-. (3.5)

In general, the boundary values of G and its derivatives will differ on opposite points of the
crack. For mode I, the potential has to be even in z. In this case (J: has the same value on
opposite points of C+, C- while w is the same in magnitude but opposite in sign. The
potential G has been used in order to determine the field generated by pressure under the
crack faces.

It is possible to create mode I deformations in the elastic region by the application of
shearing tractions to the crack faces. Due to (3.5), G cannot generate such tractions. G then
is not sufficient to describe the class of "regular" fields of mode I in the elastic region.

No such shortcoming of G appears as we endeavour to determine "fundamental" fields
of mode I : Ordinary fundamental fields in the elastic region can be defined in analogy to
what was done for half-plane and penny-shaped cracks. Briefly speaking, such fields shall
SAS 21: l-E
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have no body forces and no tractions on C+ , C- ; their displacements are permitted to be
unbounded in the order O(d 1,'2) as the edge r is approached, d being the distance from r.
Their stresses shall go to zero as we let Izi go to infinity. The condition of traction-free
crack faces means simply

Gzz = 0 on c+ ,C-, (3.6)

and the potential G seems naturally suited for the search of fundamental fields of mode I.
Pursuing this goal we should look for functions G with these properties; (a) G is harmonic
in the elastic region; G and its derivatives up to the third order are continuous in that
region; G is even in z; (b) G satisfies (3.6); (e) Igrad GI = O(d- I

/
2
) as r is approached;

(d) the stresses (3.3) shall go to zero as we go away from the crack towards infinity.
Condition (3.6) can be rewritten. Combining (3.1) and (3.6) we find

on C+,C-. (3.6*)

We can say that G, as a function of x, y on the crack faces must be harmonic in these two
variables. In the sequel we shall call a harmonic function G crack-harmonic if it also abides
by (3.6*). Harmonic functions in two variables have conjugates. This suggests to denote
another crack-harmonic function H = H(x, y, z) a conjugate of G if for a suitable choice of
e = ± I

Gx = eHy , on C. (3.7)

If e = I we combine the two potentials into a complex one J = G+ iH. J satisfies (3.1), Le.
it is a complex-valued harmonic function of x, y, z. In addition the functions J(x,y, +0)
and J (x, y, - 0) are analytic functions of x + iy in the crack domain so that

on C+,C-. (3.8)

We call J crack-analytic. Such potentials will enhance the search of fundamental fields.
Turning to the other modes of deformation we consider fields generated by three

harmonic potentials g(x,Y, z), h(x, y, z) and l/J (x,y, z) where

The field quantities are given by

u = -2(1-v)g+zl/Jx, v = -2(I-v)h+zl/Jy,

(3.9)

W= -(I-2v)l/J+zl/Jz' (3.10)

ux/2J1. = -2(I-v)gx- 2vl/Jz+zl/Jm

uy/2J1. = -2(I-v)hy-2vl/Jz+zl/JyJ"

t xz /2J1. = -(I-v)gz+vl/Jx+ zl/Jxz>

uz/2J1. = zl/Jzz

t xy /2J1. = -(I-v)(gy+hJ+zl/Jxy (3.11)

t yz /2J1. = -(I-v)hz+vl/Jy+zl/Jyz'

They form a field without body forces. The preceding formulas are well known, especially
for their use in crack analysis. The reader should observe that the functions 9 and h of
(3.9)-(3.11) appear in the form of z-derivatives g" hz in [6, 16]. Assuming the continuity
of the potentials and of their derivatives up to second order in the elastic region, we find in
particular

u = -2(I-v)g, v = -2(1-v)h,
on C+,C-;

W = -(1-2v)l/J
(3.12)

Uz = 0, t xz/2j.l = -(I-v)gz+vl/Jx, t yz/2j.l = -(I-v)hz+vl/Jy
on C+,C-.

(3.13)
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For the shearing modes II and III one assumes g and h to be odd in z; t/J has to be even.
The potentials g, hand t/J can be used to analyse fields generated by shearing tractions on
the crack faces, such that opposite points have opposite tractions, but fields of modes II
and III can also be generated by normal tractions. As (3.13) shows, such fields are beyond
a description by g, h, t/J. So much for "regular" fields.

In the case of ordinary fundamental fields, already defined above, there must be no
traction on the crack. This leads to the two conditions:

-(I-v)gz+vt/Jx = 0, -(I-v)hz+vt/Jy = 0
on C+,C-

(3.14)

and suggests that the potentials g, hand t/J are ideally suited for the search of fundamental
fields.

Let G be crack-analytic. We define

g=G" h = iG" (3.15)

Condition (3.9) is satisfied. On the crack t/J vanishes. Furthermore

on C+,C-. (3.16)

Consequently the real parts of g, hand t/J describe a field with no body forces and with no
tractions on the crack faces; the same holds for the imaginary parts.

Let L be another complex-valued harmonic function such that Lz is crack-analytic.
Now we define

t/J = - (1- v)Lz. (3.17)

We find

Again (3.9) is satisfied. On the crack we have Lzx + iLzy = 0 and

- (I-v)gz +vt/Jx = - (I-v)[(I- v)Lxz + iLyz + vLzx]

= -(l-v)(Lzx+iLzy) = 0

-(l-v)h:+vt/J,. = -(l-v)[(I-v)Lyz-iLxz+vLyzl

= i(l-v)(Lzx+iLzy) = O.

(3.18)

(3.19)

Conditions (3.14) are satisfied. Altogether the real parts of the potentials (3.17) describe a
field without body forces and without tractions on C+, C- ; so do the imaginary parts.

The results associated with (3.17) and (3.15) reduce the search for ordinary fundamental
fields of modes II and III to the acquisition of crack-analytic potentials. In the case of
(3.15), G should be even in z, while the L of (3.17) should be odd. In both cases Igrad GI
and Igrad LI shall be of the order O(d- I

/
2
) as r is approached. We can expect that any G

that yields an ordinary fundamental field of mode I gives rise to a field of mixed modes II
and III through (3.15). As for L, one can conjecture that it should be possible to relate it
to a suitable G of mode 1. This is indeed so for the case of the penny-shaped and the half­
plane crack.

Let G be even in z and crack-analytic. For the half-plane crack of Fig. 4 we introduce

(3.20)

It is easily checked and explicitly shown in Appendix A that L is harmonic. It is also odd
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in z. Since x = 0, ;; = 0 hold on the edge of the crack one can expect Igrad LI to have the
same order of growth as Igrad GI as the edge is approached. We observe that

on C+,C-. (3.21)

Now if G (x,)', +0) and G (x,)', -0) are analytic in x+ iy so are their x-derivatives. L: then
is crack-analytic.

For the penny-shaped crack we define L by

(3.22)

As shown in Appendix A, the function L is harmonic; it is odd in z and Igrad LI can be
expected to grow like Igrad GI as the edge r = a is approached. On the crack we have

aL: = G+2rG, = G+2(xGx +yGy ) = G+2(x+iy)Gx (3.23)

where the right-hand side is analytic in (x+ iy). The function L of (3.22) is thus seen to
have a crack-analytic derivative Lz• .

For easy reference the field defined by (3.15) will be denoted as a field of the first kind;
the field by (3.1 7) will be referred to as a field of the second kind. We use the same names in
order to distinguish the displacements of these fields.

The foregoing considerations indicate that the crack-analytic potentials G of mode I
are the key to all of our goals. With their aid we shall be able to find all relevant ordinary
fundamental fields for mode I for penny-shaped and half-plane crack. With their aid
we shall construct ordinary fundamental fields of the first kind for the shearing modes;
finally, by way of (3.22) or (3.20), a potential G of mode I lets us construct fields of the
second kind for the shearing modes.

We conclude this section with a list of representations of u', v' and w in cylindrical
coordinates. It should be kept in mind that all potentials are complex-valued and that the
displacements derived from them are actually pairs of displacement in complex form.

Model

u' = -zG,:-(1-2v)G, = (G-zG:),-2(1-v)G,

w = -zG:z+2(l-v)Gz = (G-zG.):+2(l-v)G:

v' = - zGoz/r - (1- 2v)Go/r.

Modes II and III (first kind)

(3.24)

u' = -2(1-v)eiO Gz+zljJ,

v' = -2i(l-v)eiOGz+zljJo/r,

Modes II and III (second kind)

with ljJ = eio(G,+iGo/r)

w = -2(I-v)ljJ+(zljJ):.
(3.25)

u' = -2(I-v)[(I-v)L,+iLo/r]+zljJ, with

v' = - 2(1- v)[ - iL, +(1- v)Lo/r]+ zljJo/r

w = -2(1-v)ljJ+(zljJ)z'

ljJ = -(l-v)L:

(3.26)

4. THE PENNY·SHAPED CRACK. FUNDAMENTAL FIELDS OF MODE I

A class of ordinary fundamental fields has already been described in [4]. We repeat
and extend the former results. In this context it is necessary to introduce oblate spheroidal
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coordinates S, t, given by

r+iz = a cosh (s+it) in complex,

r = a cosh S'cos t, Z = a sinh S' sin t in real form
(4.1)

S, t have ranges 0 ~ S < 00; -!n ~ t ~ !n. On the crack s= O. t is positive for z > 0
and negative for z < 0; t = 0 for Z = 0 and r > a. Our first concern are harmonic functions
of the form

G(x,y,z) = H(q,s)

where 0' is some parametric angle. Now

with
r

q = - exp i(O-(}'),
a

(4.2)

Here the co-factors of Hq , Hqq vanish (trivial); as for the other terms we list for present
and later use the relations

S, = tz = sinh S' cos tfaN, Sz = - t, =cosh S' sin tfaN

with N = sinh 2 s+sin 2 t

Altogether

Harmonic functions H(q, s) satisfy

H.. + tanh S' (H. + 2qHq.) = O.

For nonnegative integers n we set up

Gn(X,y,z) = q"Hn(s).

Harmonicity is achieved if

H;'(s) + (2n+ I) tanh s' H:(s) =0

whence

, Co
Hn (s) = - -co-s-h...2n....,.+"7'-s

We give Co the same value for all n, namely

t 5/ 2

Co= -----
~(l-v)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4. lOa)

where t is the unit of length; this gives Co the dimension of the square of length. We define

100 dO"
Hn(s) = Co h2n + I .• cos 0"

(4. lOb)
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The integration yields

and, more generally,
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Ho(s) = co[rr/2-arctan (sinh s)] (4.11)

Hn(s) = Cn[7t/2-arctan (sinh s)-co sinhs ±2k I h 2k ] (4.12)
k=1 Ck cos S

with

k (- (1/2»)
Ck = co( -1) k for k ~ 1.

Since (4.12) will play no major role in the sequel the verification of that representation is
left to the interested reader.

We have to look into the behavior of Gn near the crack edge and far away from it. In
this context, we list here

whence

pe"P = a[cosh (s+it)-I] = 2a sinh 2 ~(s+it)

2.j;J sinh !(s+it) = (2pi"')1/2 = a.+i/3
(4.13)

We observe that

r:. (a. + i/3)3
ya(s+it) = a.+iP- +0(p5/2)

24a
as p -+ O. (4.14)

which entails

(4.15)

ae' = 2R+0(l/R)

as

as

s -+ 00

R -+ 00.

(4.16)

(4.16a)

The power q" is analytic in (x+iy); since Gn(x,y, 0) = q"Hn(O) on the crack the potential
Gnis crack-analytic. Due to (4. lOb) the functions Hn(s) are negative. Another consequence
of (4. lOb) is

and

Ho(s)
0< -Hn(s) < - h 2n '

cos S

From (4.18) it follows that

(
Iql ) ( cos t )nIGnl < - -h-2- 'Go = - --h- Go·

cos s cos s

(4.17)

(4.18)

(4.19)
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From (4. I 6}-(4.19) we infer that

as R -. 00. (4.20)

As a Boussinesq-Papkovich potential G. generates the displacements (3.2) and the stresses
(3.3). For R -. 00 the displacements have the order O(R-·- 2) while the stresses go to zero
like R-·- 3

• This follows from (4.4), (4.9) and (4.10) and from (4.16}-(4.20).
By (4.14) sand t go to zero as p -. O. We may write

with c = -co/.fi. (4.21)

Any unboundedness of grad G. can only be due to the term ca. For the simple case G = crx
the formulas (3.24) for the displacements yield v' = 0 and

u'/c = (rx-zrx:),-2(l-v)rx" w/c = (a-zrxz)z+2(l-v)rx•. (4.22)

With reference to (2. I 2}-(2. 13a) we use az = - Pr and

rx-za: = rx-!P sin cp = (l-sin2 cp/2)a = W+cos cp)rx = Vir

so that (4.22) can be rewritten as

u'/c = [V 1r -2(l-v)a]" w/c = [V1z -2(l-v)P]r' (4.22a)

The displacements u', v' and w comply with the asymptotics (2.15) of an ordinary fun­
damental field for the approach p -. O. In the preceding form the displacements are those
associated with the potential Go. In the case of G. the factor rf must be taken into account.
For n ~ I the displacement v' will no longer vanish identically but it will stay bounded. The
other two displacements are obtained from (4.22a) by multiplying the right-hand sides by
q' for r = a, i.e. by exp ni(O-O'). We can now pronounce that G" generates, through (3.2)
and (3.3), a fundamental field. It has the geometric intensity coefficients

1mt = -exp ni(O-O'),t
a

m~ =0, m~ =0. (4.23)

Actually we have two fields, corresponding to Re G. and 1m G•. The intensity coefficients
follow suit.

Let a regular field, not necessarily of mode I, be the response to a distribution of body
forces F and of tractions T on C+, C-. Its intensity factors kj are functions kj(O) of the
position angle 0 on the edge of the crack. Let

<Xl

kl(O) = ao+ L (a. cos nO+b" sin nO).-1
represent k l • The Fourier coefficients are given by

(4.24)

(21[
27tao = Jo kl(O) dO,

(21[
7ta. = Jo k.(O) cos nO dO

(21[
7tb. = Jo k. (0) sin nO dO

(4.25)

t The factor (S/:, where ( denotes unit length, has been omitted.
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z

r r

Fig. 6.

so that

Since kl(O) is real-valued we may rewrite (4.26) in the form

(4.26)

(4.27)

We shall determine the integrals in (4.27) with the aid of the fundamental fields generated
by the potentials Gn• To this end we apply the reciprocity theorem to the regular field and
to the pair of fields defined by Gn within the subregion V' of the configuration of Fig. 3.
This subregion, shown in Fig. 6, satisfies both R ~ R' < 00 and p ~ p' > O. The boundary
of V' consists of the torus p == p', of the sphere R ""' R' and of certain portions of C+ , c- .
For easy reference we denote the torus by (J) and the remaining boundary by S', In V' the
regular field yields tractions T on (J) and on S'; we denote its displacement vector by W.
Gn generates, through (3.2), a complex-valued displacement vector field W:, and through
(3.3) complex-valued tractions on the boundary of V', which we denote by T:. We repeat
that Gn does not generate body forces. The reciprocity theorem leads to the following
balance of energies:

i feW, Tn*)-(W,,*, T)] dS = I [(Wn*, T)-(W,Tn*)] dS+ [, (W,,*, F) dV. (4.28)

Although the vectors marked by un usterisk are complex-valued the scalar product notation
in (4.28) follows the definition for real-valued vectors. Thus:

(W, r +iT") = (r+iT", W) == (T', W)+i(T", W)

for real r, T". We let p' -+ O. Asymptotically dS =ap' dcp dB on w; the integration on (J)

with respect to cp gives

I(p',B) == p'f" [(W,T:)-(W,,*,T)] dcp
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which has the form (2.17). The asymptotic behavior of regular and ordinary fundamental
fields led us to (2.21) which we repeat here as

In the case in hand, the geometric intensity coefficients are those of (4.23). Altogether

lim I[...]dS = n.fi. r2

" k\(O) exp ni(O-O') dO.
p -0 OJ Jo (4.29)

As p' -. O. the subregion V' changes into the intersection of the original clastic region V
with the ball R ~ R'. S' becomes the union of C+. c- and the sphere n of radius R'. Since
G. has no tractions on the crack faces the right-hand side of (4.28) will balance the limit
(4.29) in the form

n.fi. f" k,(O) exp ni(O-O') dO = Ie (W."'. T) dS+ i [(Wn"'. T)-(W. T:)] dS

+ Iv. (W:.F) dV·t (4.30)

Finally we let R' -. 00. We can expect

n}2 f" k\(O) exp ni(O-O') dO = Ie (W:. T) dS+ Iv (W:. F) dV. (4.31)

This happens in particular if. for R -. 00. W is bounded. T -+ 0, F = O(R- A
) for some A. > 1.

With (4.27) and (4.31) we have determined k\(O') for the given regular field.
It is possible to give the sum in (4.27) in closed form. We compose

as well as

<xl

W'" = Wo"'+2 L W:
.=]

'J.,

G'" = Go+2 L Gn •.= \

(4.32)

(4.33)

Due to (4.19) the series (4.33) converges uniformly in domains in which p is bounded away
from zero. The same applies to its partial derivatives ofany order and to (4.32) in particular.
G'" is a function of q and s. Taking the s-derivative at fixed q we find

Co [ <xl ( q )nJ -Co ( 2 cosh
2

S )G"'- --- 1+2 -- =-- -1+
5 - cosh S .~I cosh 2 s cosh S cosh 2 s-q .

Integration in accord with (4.1 Ob) yields

(4.34)

G'" = -co{ ~ log sinh'-~+o/2-arctan (sinh 'l}. (4.35)
v q - 1 smh s+ q - 1

t Here and elsewhere integration over C applies to C+ and to C- .
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Here we determine the square root such that

Imjq=l ~ 0

and the log-function such that

n> 1m log (...) ~ -n.

G * is a complex-valued harmonic potential. It takes the values

(4.35a)

(4.35b)

G* =co(~ -nlz)jq=1
on C+,C-. (4.36)

Evidently G * is crack-analytic. The two fields generated by G * are the limits of ordinary
fundamental fields. As such they need not be ordinary fundamental. We must take a closer
look at the behavior of G * as R -+ 00 and as p -+ O. For R -+ 00, equivalent with s -+ 00,

we have jq=1/sinh s -+ O. In this case (4.35) yields

(4.37)

which coincides with the asymptotic behavior of Go, as one would expect.
For the approach p -+ 0 we assume some t: > 0 and

(4.38)

By this condition q is bounded away from unity and (sinh s)/~ goes to zero as p does.
From (4.35) we derive

(4.39)

with

(4.39a)

The behavior of the fields of G * near the crack edge and under the restriction (4.38) is
determined by the approximation

G* q+l= co--Is.q-
(4.40)

This indicates that the fields of G* behave like ordinary ones everywhere at the edge but
at the point r = a, () = ()'. We shall go into more detail in Section 6.

Turning to W *, the displacement vector generated by G *, we derive from (4.27),
(4.31), (4.32) and (4.33)

k l ({}') = ~ [r (Re W*, T) dS+ r(Re W*,F) dVJ. (4.41)
2y' 2n 2 Jc Jv

With this formula our goal has been reached with respect to mode I. The combination
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(4.35) and (4.41) represents a concrete example for the representation of a stress intensity
factor due to generic three-dimensional loading F, T. The search for such representations
was suggested by Rice[ll, Appendix].

5. THE SHEARING MODES

We begin with the displacements of the first kind as listed under (3.25). For
G = Gn= q'Hn(s) we find

(5.1)

For the approach to the edge of the crack the terms s" Sr will determine the asymptotic
behavior of the displacements. In this context we can replace H;(s) by -co and q" by
exp ni(() - ()'). This leads us to

u' - coE1[2(I-v)sz-zsrr],
where

By (4.14)

v' - 2icoE 1(I-v)s" w - cOE 1[2(l-v)sr-(zs,)z]
E 1 = exp [i()' +(n+ I)i«()-()')].

(5.2)

so that

~s, - oc" ~z - -{3, (5.3)

~u' - coE,' [-2(I-v){3-(zoc),]" ~v' - icoE1(l-v){3jp

~w - coE,[2(l-v)oc-(zoc)z],'
(5.4)

A comparison with (2.15) shows that these displacements represent shearing modes with
the geometric intensity coefficients

mt = 0, (5.5)

The asymptotics for R -+ 00 of the field of the first kind are easy to establish. The properties
of Gn imply that the displacements go to zero like R-n- 2, while the stresses are of the
order O(R- n

- 3). Altogether we can now pronounce that the fields of the first kind due to
Gn are ordinary fundamental.

Turning to the field of the second kind we derive from G the potential L through (3.22).
IfG = H(q,s) then

L = sin t[Hz cosh s+ (H+2qHq) sinh s].

This relation is easily proved with the aid of (4.5) and

The details are left to the reader. The special case G = Gn yields

Ln = q"[cosh sH;(s)+ (2n+ I) sinh sHn(s)]'sin t.

For the asymptotics of p -+ 0, one can use

(5.6)

(5.7)

(5.8)

E 2 =exp ni(()-()'). (5.8a)

Now (4.14) states ~. t - {3; this and the relations (2.12) and (2.12a) yield the following
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asymptotic representations of the displacements of second kind:

j;J. u' - (1- v)coE2[2(1 - v) /3, + (z /3:>,1 = (1- v)coE2[2(1 - v)/3 + (zex),l,

j;J·v' - -2i(l-v)coE2 /3, = i(l-v)coE2 /3/p (5.9)

j;J. w - (l-v)coE2 [ -2(1-v)ex+(zex)zl,.

This again characterizes an ordinary fundamental field of mixed modes II and Ill, this time
with the geometric intensity coefficients

mt = 0, (5.10)

Let R -+ 00. From (5.8) and the properties of Hn it follows that

(5.11 )

Displacements and stresses of the field of the second kind due to Ln go to zero as R -+ OCJ.

They decay one order faster than the corresponding quantities of the field of the first kind
generated by Gn • We can now state that the fields of the second kind for L = Lo, LJ, ... are
ordinary fundamental.

It is convenient to denote the displacement vectors of the field of the first kind by ~IG,

if G is the generating potential. We denote the displacement vectors of the second kind by
~2G, if L is derived from G by means of (3.22). If G = Gn then the O-dependence of the
displacements shows up in a factor E(O), common to all displacements of the same field.
Obviously E(O) = constant exp niO for ~2Gn, and E(O) = constant exp (n+ 1)i8 for ~IGn'

Without loss of generality we may set E = E) for the first and E = E2 for the second kind.
E l and £2 appear in (5.2) and (5.8a) respectively.

The field ~2GO deserves special attention. Go = Ho(s) is real-valued, and so is Lo. The
real part of ~2GO is represented by

u' = - (I - v) •[2(1 - v)Lo, + z •Lor:l, v' =0

w' = -(I-v)' [-2(I-v)Lo:+(zLoJ:l

and the imaginary part by

(5.12)

v' = 2(1- v)Lor> u' =0, w=O. (5.13)

The results (5.5) and (5.10) permit to combine the fields of first and second kind so as to
obtain fields of pure modes II and III. One finds the following combinations:

n = 1,2, ...
(5.14)

for mode II;

n = 1,2, ...
(5.15)

for mode III.

In the case (5.14) the geometric intensity coefficients mT and m! vanish; we have
amt =exp ni(O - 8') for Wn* and all n. In the case (5.15) mt, mf exchange roles.

Relations (4.27), (4.29) and (4.31) apply again after certain nominal changes. They
yield k2(O') instead of k , if the displacements come from (5.14) and if the T n* follows suit.
Similarly they furnish k3(O') if the Wn* are from (5.15). Ultimately we want the analogues
of (4.41) for k 2 and k 3 ; this is easy to do. We extend the meaning of the composition (4.32).
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If the Wn* in (4.32) are of mode I (as originally assumed) we set w* = W I* for the sum. If
the W,,* comefrom (5.14) we set W* = J.v.t. If they come from (5.15) the sum W* is denoted
by J.v.r.. In detail we have

",

Wit = (Re gc2Go)/(I-v)+2 L (~2Gn-e-lu. gc,Gn_ I )/(2-v)
n=' (5.16)

"-'

Wltl = 1m gc2Go-2i L [gc2Gn+(I-v)e-'{I'· gc,Gn_ d/(2-v).
n= I

Through (3.22), G* gives rise to a potential L*. From (4.35) and (5.6) we derive

L* [ q+ 1 q sinh S G sinh S J .= ('0-- - 0- --G* 'sm t.
q-I q-I q-l

(5.17)

L* determines a field of the second kind with displacements ~ 2G*. With the aid of G*, the
sums (5.16) can be expressed as follows:

These expressions yield in particular

(2-v)Re Wit = Re {2)2GO/(1-V)+2)2G*-e-iO'. 2)1(G*+GO)}

(2-v)Re WIT. = Im{(I-v)2)2Go+2)2G*+(I-v)e-io'2)I(G*+Go)}.

The required analogues of (4.41) are:

(5.18)

(5.19)

(5.18a)

(5.19a)

k 2(O') = ~ [r (Re W.T, T) dS+ i(Re WIT, F) dVJ (5.20)
2y 2n2 Jc v

k 3(O') = ~ [r (Re WITh T) dS+ i (Re W.TIoF) dVJ. (5.21)
2y 2n 2 Jc v

Here the weight functions Re WIT, Re WITI are available in closed form through (5.18a) and
(5.19a).

The fundamental fields with the displacements Wit and WIt. are important beyond the
configuration of the penny-shaped crack. For this reason we list their pote:ltials g, hand
tjJ as well. We distinguish them by an asterisk.

Mode II

(2-v)g* = _e- iO
'. (G*+Go):+Lore-io+(I-v)L:+iLj

(2- v)h * = -ie- iO'. (G*+ GO). + iLore- iO +(1- v)L~ - iL:

(2-v)tjJ* = -ei(O-O')Gor-e-i/J'(G:+iGy*)-Lo:-(l-v)L:.

Mode III

(2-v)g* = -i(l-v)e-io'(G*+Go).+i(l-v)Lore-iB-i(l-v)L:+Lj

(2-v)h* = (l-v)e-io·(G*+Go).-(I-v)Lore-iO-L:-i(l-v)Lj

(2-v)tjJ* = -i(l-v)[ei(O-O')GOr + e- iO'(Gx* + iG
I
:")+ (Lo-L*>:].
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G* and L* have been referred to Cartesian coordinates. Since Go and Lo depend on rand
=only, their derivatives have been given accordingly. One can rewrite the lists of g*, h*
and ljJ * in terms of cylindrical coordinates. In this case it is useful to present the information
about these potentials in the following form:

Mode II

g** =g* cos O+h* sin 0; h** = -g* sin 8+h* cos 8

(2-v)g** = _e'(O-W), (G*+Go):+Lor+(1-v)L~+iL:/r

(2 - v)h ** = - ie,(9-8'). (G* + Go): + iLor - iL~ + (1- v)Lt/r

(2- v)ljJ * = _e,(9-9'). (G~ +GOr + iG3 / r) - Lo:- (I - v)L~

Mode //1

(2 - v)g** = - i(l- v)ei(O-o·). (G* +Go)z+ i(l- v)(Lo- L*)r + Lt/r

(2- v)h ** = (I - v)ei(9-8'). (G *+ Go)z- (1- v)Lor - L~ - i(1- v)Lt/r

(2 - v)ljJ* = - i(l- v)[e,(9-9·). (G~ + GOr + iGt/r) + (Lo-L*)z].

6. SINGULARITY CONDENSATION

The fundamental fields which furnish the weight functions in (4.41), (5.20) and (5.21)
will be considered in some detail. We assume (4.38) first and proceed with an analysis of

(6.1 )

e* reprcscnts those terms in the expansion (4.39) of G* which can cause unbounded stresscs
not only in the field of mode I for which G* serves as Boussinesq-Papkovich potential, but
also in the fields of the first and second kind, derived from G*. From (4.14)

sinhs= ~(I+P/4a+O(p2», sint= ~(1-P/4a+O(p2)) (6.2)

(6.1) and (6.2) imply

(6.3)

At this point an expansion of the functions of q is necessary. To this end we introduce two
distances d, d' in the plane of the crack (Fig. 7). We define

d'2 = 2a 2(I-cos 9); 9 = 8-8'. (6.4)

We can write

Bearing in mind that r-a = p cos cp we observe that

(6.5)

(6.6)
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II

Fig. 7.

whence

Ijd2=[1- ~~~ +0(p2)JId'2

II(q) = 2cO(ajd') 2
{ -i sin 8+ r~a+O(p2)].

From (6.7)

3/3 = 2co(ajd')2. [i sin 8-1 +O(p)J.

Using (6.7) and (6.8) along with (X2 = pel +cos q» we obtain

(6.7)

(6.8)

G* = 2co(ajd')2~

. {-i sin 8[1 + pj4a-p(l + cos tp)j3a]+p(2 cos tp-l)j3o} +O(pSi2) (6.9)

and in particular,

(6.9a)

The displacements Re WI* are generated by the Boussinesq-Papkovich potential Re G*.
Due to (6.9a) these displacements are bounded along any segment of the edge of the crack
for which (4.38) holds. They also comply with (2.25); this makes the field by Re G* regular
along those segments. The field is of mode I and possesses a stress intensity factor k l*(8)
for 8 '+ 8' mod' 21£. Here and in two more cases to come it is convenient to determine the
stress intensity factors of an explicitly given field with the aid of (2.2) taken on C+, i.e. for
p =a - rand q> = 71:. This yields

{I-v)k l = limp{w-wo)jj2'P; (l-v)k 2 = limp(u-uo)/j2'P;
~o ~o

k 3 = -limp(v-vo)j.j2P.
p ... O

(6.10)
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Tn the particular case of IV1* one finds (see also the list of crack face displacements in
Section 7) an axial displacement component of Rc I'vr

whence

J ' " r /'11"*= 2(o"-r)!v'o(- on c (6.11 )

(6.12)

[For simplicity the factor t 5
/
2

, t = unit of length, has been omitted on the right-hand sides
of (6.11) and (6.12).] This stress intensity factor goes to infinity as () -+ ()'. It grows in inverse
proportion to d,2.

Let us now take a look at w* for () = ()'. In this case (6.11) yields

() = ()': w* = )2(a;r) (a-r)-3I2. (6.11a)

We can now state: the summation to Re W I* of the ordinary fundamental fields due to
Re G. removes the unboundedness of the displacements at all points () #- ()' mod' 2n and
aggravates the unboundedness at () = ()' to the order of d- 3

/
2 for some displacements.

The mode I field generated by 1m G* is quite different. It is ordinary fundamental at
all edge points () #- ()' mod' 2n with the geometric intensity coefficient

1me = -cot ~«(}-(}').
a

(6.13)

The coefficient goes to infinity as () -+ ()' and changes sign after the passage through ()'.
The phenomena (6.11a), (6.12) and (6.13) suggest to call G* a potential with a con­

densation point «() = ()') at the edge of the crack. The two associated fields, defined by
Re G* and 1m G*, will be referred to as fundamental fields with a condensation point.

The phenomenon of condensation is also present in the fields of WIt and W1tl' In order
to exhibit the essential features we need the analogues of (6.9) with respect to Go, Lo and
L*. For p -+ 0 we find

(6.14)

The portion that can cause infinite stresses is

Go = - Co sinh s+ c3° sinh 3 s = - Co~ [(I + p!4a- p(1 +cos (,O)!3a] +O(p5/2) (6.15)

(5.8) yields

Unbounded stresses are due to

L o = -Co sin t+zGo!a. (6.16)

Lo = -Co (sin t+ ~ sinh s) = -Co ~[I-P!4a+P(1+cos (,O)!a]+O(p5/2). (6.17)

As for L* we go back to (5.17) ; using also (4.39) and (6.16), we find that

(6.18)
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can be taken as that portion of L* which gives rise to unbounded stresses. With the aid of
(6.2), (6.7) and (6.8) we can write

£* = 2co(a/d')2~ {- i sin .9[1 + p(3 +4 cos q»/4a] + p(1 + 2 cos q»/a} +0(p5/2).

(6.19)

The leading terms in the representations of Go, £0, G*, £* are (in this order)

Go = a/y,

with

£0 = Ply, G* = if(.9)a/y, £* = if(.9)P/Y

y = .)2(1- v)a, f(.9) = cot ~.9,
(6.20)

We must now determine to what extent these leading terms will prevail in Re WIT,
Re WIT•. The following list of displacements due to the leading terms is found:

ye- iO'u' = 2( I - v)( I - if)az- (1- if)za" - (I - if+f')z(a/r),

ye-iO'v' = 2(1- v)(i+f)az+ if'za,/r- (f" - if')za/r2

ye- iO
' w = 2(1- v)[(1 - if)a, + (I - if+ f')a/r] + [( -I + if)za, - (1- if+ f')za/r]z

yu' = -2(I-v)[(I-v)ifp,-f'P/r]-i(l-v)fzP,:

yv' = -2(1-v)[fP,+ (l-v)if'P/r]-i(l-v)f'zpz/r

yw = 2i(l-v)2fpz-i(l-v)f(zpz)z

yu' = -2(I-v)2p,-(I-v)zP,:

yv' = 2(I-v)iP,

yw = 2(1-V)2P:- (I-v)(zp:)z'

These displacements show both bounded and unbounded terms. It turns out that the
unbounded terms annihilate one another in the compositions Re Wit, Re Wltl' We show
this in detail for the component u' of Re Wit. By (5.18a) and the preceding list

(2-v)yu' = -2(I-v)P,-zP,:+2(I-v)f'P/r-2(l-v)az+za,,+(I +f')z(a/r),

= 2(1- l')f'P/r+ (I +f')=(a,/r- a/r2),
(6.21)

since a, = P: and a: = - p,. The terms in the last line are bounded and they vanish at
the edge. We emphasize here that (6.21) represents only the contribution of the leading
terms (6.20). In order to obtain the complete u' we must add the contribution from
~1(G*-G*+Go-Go), ~2(G*-G*), ~2(GO-GO)' Obviously these yield bounded dis­
placements so that the total u' for Re WIT is bounded. Moreover it abides by (2.25); the
last line in (6.21) illustrates this phenomenon. To show the same for the other components
of Re WIT and for all of Re WiTt is left to the reader.

Altogether we can state that the fields of Re Wit, Re WIT. behave like regular ones for
SAS 21: J-r
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0"" 0' mod' 2n. As such, they exhibit stress intensity factors. We state that

H= )211 [(2-3v)ld'2-l/a 2]
• (l-v)(2-v)

k
2 J21l . 2j = _V_,(,,_. Sin 91d'
(2-v)

for mode II.

k * 2)211. 0ld,2
2 = - (2_v)sm .,.

k! = ~~[(2+V)ld'2_(l-v)la2]

for mode III.

(6.22)

(6.23)

Again (6.10) can be used in order to derive (6.22) and (6.23) from asymptotic or explicit
representations of the displacements on C+. In particular the list of crack face weight
functions in the next section can be chosen. In this context one should observe that

22+8 = ±n for r = a. (6.24)

With this much said, the detailed verification of (6.22) and (6.23) can be left to the interested
reader. The behavior of k~ for mode II and of k! for mode III is similar to that of kT for
mode I. It is interesting to note that k3* for mode II and k2* for mode III do not vanish.
They also go to infinity as e-+ e' ;their order of growth is given by 2a2sin 9Id,2 = cot !.9,
and they change sign as epasses through e'. We shall return to these phenomena in our
discussion of the half-plane crack.

Relation (4.28) of the reciprocity theorem can be replaced by

1[(W, T*)-(W*, T)] dS = 1[(W*, T)-(W, T*)] dS+ l.. (W*,F) dV,

where w* is either Re W I*, Re WIT or Re WITI and T* is the associated traction vector. A
comparison between formulas (4.41), (5.20) and (5.21) shows that:

lim 1[(W, T*) - (W*, T)] dS = 2)2· n2
• kj(e'),

1' .... 0 w
(6.25)

where} = 1,2,3 in accord with the mode chosen for W*. Now the surface of the torus w
in (6.25) can be split into pieces w', w" with w" satisfying (4.38). Since the field of W* is
regular under (4.38) we have

lim1[(W,T*)-(W*,T)] dS= O.
p-o wI'

Combining (6.25) and (6.26) we see that

(6.26)

(6.27)

no matter how small e > O. This relation applies to any regular field with intensity factors
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kj at () = ()'. Therefore, the fundamental fields associated with Re WI·, Re WIT and Re WITI
have universal character near the point of condensation.

7. THE HALF-PLANE CRACK. A LIST OF CRACK FACE WEIGHT FUNCTIONS

We return to the configurations Figs 4 and 5. One can derive the weight function
formulas (4.41), (5.20) and (5.21) for the half-plane crack by a suitable adaptation of the
procedures used for the penny-shaped crack. The equivalent of the potentials G. is[4]

G(x,y, z) = constant ° Erjc(j).a.)t!(X+iY), ). > O. (7.1)

The series (4.33) is to be replaced by a Fourier integral. The potential L is derived from G
by means of (3.20).

We can also obtain the weight functions for the half-plane crack by a limit procedure.
To this end we place the center of the penny-shaped crack of radius a at the point x = - a,
y = O. As a -+ 00 the penny-shaped crack turns into the half-plane x < O. Following this
procedure we confine the point x, y and z to a fixed finite domain. The coordinate of
condensation on the crack edge is denoted by y'. It takes the place of ()'. We have to use

whence

r = a+x+O(lfa), as a -+ 00 (7.2)

a(q-l) ..., x+i(y-y') = C, 2a sinh2 Hs+it) = r-a+iz"" x+iz = peirp

1
s+it..., j;I(a.+iP).

The potential G·, defined by (4.35), goes to the limit

1 a.-J(
G.= log--.

j2o(l-v)J( a.+J(

(7.3)

(7.4)

This result is partially due to the influence of Co since this coefficient is in proportion to
a- I/2. We observe that Go -+ 0 as a -+ 00. For fixed G(x,y, z) the function L of (3.22) depends
on a. As a -+ 00, the function L takes the limit (3.20). In the case G = G· the limit of L·
as a -+ 00 turns out to be

(7.5)

i.e. L. is found by direct application of (3.20) to G•. The weight function formulas retain
their form after replacing ()' by y'. The displacements Re WI·, etc. are obtained as follows:

For mode I. Use Re G. as Boussinesq-Papkovich potential and determine the displace­
ments by means of (3.2).

For modes II and III. Determine displacements of the first kind by (3.12) and (3.15)
for G = G.; find the displacements of the second kind by (3.12) and (3.17) for L = L•.
The displacement vectors so obtained are combined into

(7.6)

(7.7)

From these it follows that

(7.8)
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(7.9)

With these rules and formulas the weight functions for the half-plane crack are completely
described.

In many applications the weight functions for the crack faces C+, C- alone are needed.
For the convenience of the reader we list the displacements of the relevant fundamental
fields for penny and half-plane. It suffices to do this for C+. The displacements on C- are
found by the following rules: the normal displacements w of modes II and III and the
displacements u' and v' (u and v) of mode I are the same at opposite points of the crack.
All others change sign as we go from a point on one face to the opposite one of the other.

Crack face weight functions on penny
Abbreviations: v' = 2(1-v)/(2-v); ei9 • (Gz*+Goz) = G'

Preliminary Forms:

Mode I.
u'= -(l-2v)ReG,*, v'= -(l-2v)ReG3Ir, w=2(I-v)ReG:.

Mode II.
u' = ..,..v'Re[Lor+(I-v)L~+iLt/r-G']

v' = v'Re [iL~ - (I-v)Ltlr+iG'], w = v'Re[Lo:+ (!-v)L:].

Mode/II.
u' :s: v'Re [(1- v)iL~ - Ltlr+i(l-v)G']

v' = v'Re [(1- v)Lor + L~+i(l- v)Lt /r- (1- v)G']

w = v'(!-v)/mL:.

With the abbreviation T = Ja 2
- r i the quantities in the preliminary forms take these

values on C+ :

Gtlr = iG~,G* I' q
r = - '2Co1t/ ,

r(q-I)jq=!

G' = 2coei9/(q-I)T, Lor = cor/aT,

qT (q+ I)r
L~ = - 2coar(q-I)2 -co (q-l)aT;

I
L: = -co1t/2a- co1ti r::-I'

a(q-l)y q-l

* _ q+1
Gz -Co(q_l)T

L o: = co1t/2a

*/ . qT
Lo r = -2/co ( 1)2ar q-

In order to express real and/or imaginary parts of these quantities in a convenient way, we
use besides r, d, 8, the angles (j and A. [no relation to the parameter A. in (7.1)] as shown in
Fig. 8. We can write

I).-- = -ae' /d,
q-I

q+1 ,).
-= 1-2ae /d
q-I

~ = J;;jd (sin A./2-i cos A.(2)
yq-l

1 r::-I = (a/d)3/2 . ( - sin 3,1,/2 + i cos 3A.(2);
(q-l)yq-I

q 1 1
--...::...--,== = --+ -------,==
(q-l)~ ~ (q-l)~

G' = - 2co(a/d' T)ei
()'+3) = 2co(a/dT)e-'o.



Weight functions and fundamental fields for the penny-shaped and the half-plane crack in three-space 85

sgn).=sgnp=sgn'\1 forO<I~<lI'

Fig. 8.

The following two identities are useful in order to obtain the final form ofthe displacements:

[2(aj d) cos 0- rja]f T = T[1-(aj d)2]j ar

[(2a 2jrd) cos ).-rja]fT= T[I +(ajd)2]jar.

Final Forms:

Mode I.

(I-2v)n
u' = ,r.:u [-cos ).j2+ (ajd) cos 3).j2]

(1- v)2ry' 2d

v' = (I - 2Vfi [sin ).j2 - (ajd) sin 3).j2]
(l-v)'2r 2d

w = J2Tj Jad2.

Mode II.

J2'T
u' = - {v +2(ajd) cos ).+(ajd)2[v-2-2v·cos 2)'])

(2-v)·Jaar

v' ~ - 2J'i;. [(1-v)(aid) sin l+ >(aId)' sin 2;,J
(2-v)' aar

w= - J2·n B+v+(I-2v)(ajd)3/2 cos 3).j2].
2(2-v)a' Ja

Mode III.

u' = 2Ji . T [-(ajd) sin ).+v(ajd)2 sin 2),]
(2-v)·Jaar

v' = - Ji'T [v-2(I-v)(ajd) cos ).+(ajd)2(2-v-2v cos 2),)]
(2-v)·Jaar

(1- 2v)J2n .
w = - 2(2_v)'d3/2sm 3).j2.

(7.10)

(7.11 )
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At r = 0 the displacements u', c' become ambiguous and Cartesian displacements u, care
preferable. The transformation from one pair to the other is-in complex form-

u+iv = eio(u'+iv').

As an example let us consider mode I. From the list of final forms we derive

here

As r -. 0 we have q -. 0, A-. 0 and

. (1-2v)n '0'
u+zv = 'e' .

(1- v)· 2a.j£I

The same result is found as we use the preliminary list and

(7.12)

1 '0

G* -. - . c ne'~
r 2a 0

as at constant 8

together with Gl / r = iG:. The other modes can-be treated in the same vein.
The weight functions for the half-plane crack, in particular on C+ , C- , can be derived

from those of the penny by letting a -. 00. The quantities d, d', A retain their previous
meaning, and Fig. 9 shows the relevant details. We observe that

as a -. 00. (7.13)

In the limit process the term ar behaves like fl. The displacements u', v' become Cartesian
ones u, v. We list the final results.

Crack face weight functions on half-plane C+

Mode I.

(l-2v)j2n
u = d- m .cos 3A/2

4(l-v)

= -(l-2v).j2n d_ 3/ 2 • 3 1/2
v 4(I-v) sm A

w= 2·~/d2.

Mode II.

u = 2(1 + 2~vcOS 2),)'~/d2

v = - ~ (sin 2A)~/d2
2-v

- '2(1 - 2v)n
w = v ~ d- 3/2 cos 3;';2.

2(2-v)
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y

x

y' ;condensotlon point

sgn~: sgn(y-y'l

Fig. 9.

Mode Ill.

u =~ (sin 2,l.)·~/d2
(2-v)

v = -2(1- ~cos2,l.) ~/d2
2-v

J2. (1- 2v)n d- 3/2 • 31/2w=- 2 SInA.
-v

The limit process a -+ 00 can also be applied to the formulas (6.12), (6.22) and (6.23)
for the stress intensity factors of the fundamental fields at the edge points (J :F (J' mod· 2n.
Relation (6.12) stays verbally intact; (6.22) and (6.23) become simpler. For the half-plane
crack k2* vanishes for mode III and k3* for mode II. The terms lIlt are to be replaced by
zero. That k2* does not vanish in (6.23) and that kt does not vanish in (6.22) must be
interpreted as the effect of curvature of the edge of the crack.

We conclude this section with two examples. For our first example we expose the crack
faces of the penny to distributed pressure p(r, (J). Formula (4.41) and the displacement
w = .J2TIJOd2 of mode I lead immediately to (1.9). In an earlier derivation of (1.9) in [4]
the displacement wwas found by summation of (4.32) with the W,,* taken at the crack faces.
The second example is for the half-plane crack. At the point x = - do, y = 0 of the crack
we apply forces Y to C+, - Y to C- ; the force vectors are parallel to the y-axis (the edge
of the crack). In this case the elastic defonriation is of mixed modes (II and III). Equations
(5.20) and (5.21) are to be used in conjunction with the displacement v. In the list above, v
is given with the aid of ,l.. We have

d2 sin 2,l. = - 2doy'.

This leads to the stress intensity factors:

(7.14)

(7.15)

8. FINAL REMARKS

For the penny-shaped and the half-plane crack in the full space all relevant fundamental
fields are now available. The associated weight functions permit the calculation of the stress
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intensity factors of interest by mere quadrature but our results are significant beyond such
applications.

Let us consider a finite elastic body (] with a penny-shaped crack inside, say the body
in Fig. 6, bounded by the spherical surface n. Let ~' denote one of the fundamental fields
with condensation point 0' of the infinite structure, say the field of mode I, generated by
Re G*. One can show that the tractions on n, generated by ~', are self-equilibrated. It is
therefore possible to determine within (] a regular field fJ2' which annihilates those tractions.
Moreover 9£' can be assumed to have no body forces. The sum ~ = ~'+9f constitutes a
field in (] without body forces and without tractions on C+, C- and n. It is a fundamental
field for t. Assume now in (] a regular field 9f, whose stress intensity factors we wish to
determine. To this end we apply the reciprocity theorem to 9f and ~ for that portion t' of
(] which is outside the torus w (Fig. 6). If Wand W* denote the displacement vectors of~
and ~ respectively, if furthermore T, F are traction and body force of 9f while T* stands
for the traction due to ~, then

1[(W,T*)-(W*,T)]dS= r (W*,T)dS+f.(W*,F)dV;
w Js t

S' consists of n and of those portions of C+, C-, which are outside the torus. As p' -+ 0
this equation takes the form

2·j2n2kr(fJ') = r (W*,T) dS+ f (W*,F) dV.Jcv{l t
(8.1)

The right-hand side needs no explanation. The left-hand side is based on the observations
(6.25}-(6.27) with regard to!/' and on the circumstance that the contribution of 9f' to the
integral over w will vanish in the limit p' -+ O. Formula (8.1) can be extended towards k2

and k3• Moreover the validity of (8.1) is not confined to a body bounded by a sphere. n
can be any surface containing the crack. The computational effort to acquire a weight
function formula of type (8.1) is modest. We merely have to modify an already available
fundamental field by a regular field fIt.

We can go further. Let d be a finite body with a plane crack ofconvex shape. Moreover
we assume the edge of the crack to be smooth and to be composed of circular arcs of
various curvatures. Let f' be such an arc. Without loss of generality we can assume that
f' lies on a circle of radius a, as shown in Fig. 8. We now pick a point of condensation on
f' (0' in Fig. 8) and draw a sphere of radius f: (called an f: sphere) around it. For sufficiently
small values of f: the arc will have its endpoints outside the sphere; all points on and within
that sphere will belong to d. We take again the fundamental field ~' of mode I and
condensation point 0', as generated by Re G* for the penny-shaped crack in the infinite
space. We define: a field ~ in (] is fundamental of mode I with condensation point e' if:
(a) the field has neither body forces nor tractions on the crack and other boundary of (] ;
(b) it behaves like a regular one at all points of the edge, different from the point of
condensation; (c) within the f: sphere it differs from!/' by a regular field.

For such a field ~ and any regular field in 6, formula (8.1) applies again; this time C
is the plane crack of convex shape and n the remaining boundary of 6. In the same vein,
fundamental fields with condensation point 8' can be defined for the other modes. In [10],
Paris, McMeeking and Tada described a numerical method for the calculation of plane
strain fundamental fields. It is based on a priori knowledge of the asymptotic behavior of
the displacements of the fundamental field near the tip of the crack. Their method can be
utilized for the computation of F. Inside the f: sphere we approximate ~ by ~'; in the
remaining portion 60 of t we approximate F by a regular field 910 without body force,
subject to these conditions: (i) on the f: sphere, the displacements of fJit o and ~' coincide;
(ii) fJit o has no tractions on all other parts of the boundary of 60 ,

On this occasion, some comments on the uniqueness of weight functions are perhaps
in order. Returning to (Ll) we assume that w* is continuously defined throughout the
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elastic region, i.e. at all points of V other than those on the edge of the crack. W* shall be
continuously differentiable at the inner points of the region. As for W*', this vector field
shall be continuous at all points of the boundary S of V, the edge excluded. Let there be a
second pair of such fields, W* and W*' for V and S respectively such that

(8.2)

for all regular fields responding to self-equilibrated load systems F, T. Subtracting (8.2)
from (1.1) we find

0= L(F, Wo) dV+ Is (T, Wo) dS

with Wo = W*-W*; Wo= W*'-W*'.
(8.3)

If Wo is a displacement field of rigid body motion and if Wo= Woon S then (8.3) is satisfied
for all self-equilibrated load systems F, T. We assert that this is the only choice of Wo, Wo
in order to make (8.3) possible. Proof: let Ph P 2 denote position vectors of two inner
points of V and let concentrated body forces attack PI and P2, such that .1.(P1- P2) is the
force at PI and .1.(P2 - PI) the force at P2, A. being some scalar. This system offorces is self­
equilibrated. From (8.3) it follows that the component of Wo in the direction of P2- PI is
the same at both points and, more generally, the same at all points P =PI + t(P2 - PI)
where t is a scalar restricted by the condition that P belong to V. Since Wois continuously
differentiable inside V, one can derive that Wo, interpreted as a displacement field, has
vanishing strains. Consequently Wo is a displacement field of rigid body motion. With this
taken into account, (8.3) implies

o= Is (T, Wo- Wo) dS (8.4)

for all self-equilibrated systems F, T, but F does not appear in (8.4) and (8.4) can be taken
as valid for arbitrary T, which in turn implies Wo= WO, Q.E.D.

From here on it is reasonable to assume that the weight functions W*, W*' in (1.1)
are displacements of a suitably normalized fundamental field § with condensation point
Q. The stress intensity factor kj(Q) in (1.1) is that of a regular field, responding to body
forces F and boundary tractions T. Let us now change the causes which give rise to the
regular field. Let the displacements of such a field (aI) be prescribed on a portion So of S
(Fig. 1, shaded area) and let the tractions be given on the remaining portion SI of S.
Body forces are admitted as before. In order to find a formula for kiQ) under the new
circumstances we modify § by the addition of a regular field alo such that the sum
J; = § +aloyields zero displacements on So. In this context it is assumed that So is away
from the edge of the crack. Altogether J; is a field without body forces, without tractions
on SI and without displacements on So. With aI and j; we form the energy balance on the
reciprocity theorem and obtain

kj(Q) = r (T, W*) dS- r (T*, W) dS+ r (F, W*) dVJs. Jso Jv (8.5)

where W*, T* go with 1'. This brings us to another utilization of the fundamental fields
of the penny-shaped and of the half-plane crack. If a finite body with a penny-shaped crack
inside is subject to geometric boundary conditions one can acquire weight function formulas
of type (8.5) by merely adding regular fields to the fundamental ones, described in the
preceding sections.
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The infinite structure, cracked in a plane outside of a circle of radius a, can also be
treated by the method of crack-analytic potentials and with the aid of relation (3.22)
between G and L. Its fundamental fields, modified by the addition of regular ones, can be
useful in the analysis of finite structures such as the cylinder with an external circumferential
notch.
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APPENDIX A; HARMONICITY·PRESERVING LINEAR DIFFERENTIAL
OPERATORS OF ORDER I

We take a domain D (an open and connected set) of the space and consider the class f§ of functions which
are harmonic in D. If F(x, y, z) belongs to r§ then F admits continuous partial derivatives ofall orders and satisfies

(AI)

Let P, X, Y, Z be four functions, defined in D, each of them having continuous partial derivatives up to the
second order. We construct the linear operator

o 0 0
!f'=P+X-+Y-+Z-ox oy OZ

and pose this question: how must P, X, Y, Z be chosen in order to enforce

(A2)

!f'FeG for all Fef§. (A3)

Applying!f' to the harmonic functions F = I, F == x, F = y, F == z we see at once that

X+x'Pe'd,

Pef§

Y+Y'Pe~. Z+:'PE~IJ

(A4)

(AS)

are necessary conditions in order to achieve (A3). They imply in particular that P, X, Y. Z must admit continuous
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partial derivatives of any order. Assuming (A4). (A5) from here on and using

(A6)

(A7)

we obtain

I
2' V2!i'F =' XxFxx + Y)'F,:. +Z,F" + (Xy + Yx)F X)' + (XX +Zx)F" + (Y, +Z,,)F.,

for a generic Fe '1J. For the special harmonic functions

(A8)

F =' xy, F =' xz. F =yz,

the condition V2!i'F =0 and (A8) necessitate

X" + YA =O.

Now (All), (A9) and (A 10) imply

Xx = Y, = Z,.

Y,+Z, =' 0 (A9)

(AIO)

(All)

for a generic Fe'1J. Altogether we can now state that conditions (A4), (A5), (A9) and (AIO) are necessary and
sufficient to enforce (A3), Le. to make !i'F harmonic whenever F is so. It is easily checked that the following
functions comply with those conditions:

P =Po+ax+by+cz

X = a(x2- y2_ Z2)+2bxy+2cxz+dx-c*y+h*z+Xo

Y = 2axy+b(y2 _x2- Z2)+ 2cyz +dy+ c*x- u*z + Yo

(AI2)

(Al3)

(AI4)

(AI5)

where Po, Xo• Yo, Zo; a, b, c. d; a*, b*, c* are constant coefficients. The case where all coefficients but Po. Xo• Yo.
Zo vanish can be considered as trivial. Of the others we list three in particular. These are

!i'F = xFx +yF)'+ zF,

!i'F = zFx-xFz

(AI6)

(AI7)

(AI8)

The operators of (A I7) and (A 18) are useful in the crack analysis of this paper. In terms ofcylindrical coordinates
T, 0, Z we can represent (AI8) in the form

!i'F = zF +2zrF, + (Z2 - r')Fz' (AI9)

The operators defined by (AI2HAI5) are the only ones complying with (A4), (A5), (A9) and (A 10). We consider
the function P. From (A7) and (A9) we derive (X,+ Yx) = -4Px, = 0; in the same vein P" =0, P,z = 0 follow.
(A7) and (AIO) yield

this and the harmonicity of Pimply Pxx = P,... = Pzz = O. We have shown that all second order derivatives of P
vanish; (A 12) follows. Turning to X, Y, Z we derive from (A9) and (A10) : Xxx = Y,x = -X", Xxx = -X", hence
Xxx = -V2X= 2Px' Integration yields Xx = 2P+u(y,z); analogously Y, = 2P+v(x,z), Zz =2P+w(x,y). Due
to (A I0) we must have u =v = W, which cannot happen unless u, v and ware constants. Altogether we have found
that

Xx =2P+d, Y, = 2P+d, Z, = 2P+d (A20)

where d is a constant. At this juncture we derive from (A9) :

X" = - Yxz = Zx, = -X}.z whence X" = Yxx =Zx, =O. (A21)

Let now d and P be given, the latter in the form (AI2). It remains to determine X, Yand Z from (A20) by
integration, complying with conditions (A9). It is obvious that X, Yand Z by (A13). (AI4) and (A15), satisfy
(A20) as well as (A9); in particular (A20) and (A9) are already satisfied by those terms of X, Y, Z which go with
the coefficients a, b. c, d. The remaining portions of X, Y and Z satisfy (A9) and the homogeneous forms of
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(A20), i.e. the equations
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Xx = Y, = Z, = O. (A22)

The most general solution of (A22) under condition (A21) is of the form

the general conditions (A9), of which (A21) is but a special consequence, cannot be satisfied unless the functions
al(Y), etc. are linear. This leads to the linear functions

Z = Zo+c,x+ClY.

Even so the coefficients are not free to choose; we must have

It is now seen that the terms with Xo, Yo, Zo, a·, b·, c· in (AB), (AI4) and (AI5) represent the most general
solution to (A22) under (A9). This completes the proof that formulas (A l2}-(A IS) provide the most general form
of the operator !i' in order to preserve harmonicity under (A3).

APPENDIX B: EVALUATION OF SOME INTEGRALS

The integrand in (2.17) contains factors

X·p dql = -(11: cos qI+t:, sin qI)p dql = -11: dz+t:, dx - -dV,*

Z·p dql = -(t:, cos qI+l1: sin qI)p dql = -t:, dZ+I1: dx - dV: (BI)

Y· p dcp = -(t~, cos cp+r~: sin cp)p dcp = -r~, d:+r~: dx -jJnlJcP: d:-{J; dx) = -jJnl J do:*.

The analogous terms for X, Y and Z are obtained from the preceding ones by removing the asterisks and by
replacing nlj by k)' We observe that 0:, V" Vl , V" and V lz and the x-derivatives of these quantities vanish for
qI = ±n. Therefore

J dV,· = 0,
:I'

which proves (2.18). The limit I(y) is of the form

J dV: = 0,
:I'

(B2)

J

I(y) = L a'JnI,kJ
iJ= I

(B3)

with certain constant coefficients G,)' The asymptotic relations for regular and ordinary fundamental field make
it obvious that aJ' = aJl = alJ '" all = O. Therefore

I(y) = L a,jnl,kJ+aJJnlJk J •

'./= I

We determine aJJ first. As a consequence of (BI) we can write

whence

I f"/laJJ =- pdo"
p -,

(84)

(B5)

Along Ii' we have 2 do: = - Pdrp, 2 d{J = 0: drp. The first of these relations permits us to rewrite (B5) as follows:

/lOJJ = - -.!.- f' pl dql = - f' sin l rp/2 drp '" -n.2p _, _,

In the absence of terms with kJ, mJ one may write

(B6)

2Jl/(Y) = f, {- [- Vx +4(I-v)A] dV,*+ [- V,+4(I-v)B] dV:+[ - V:+4(I-v)A·] dV,

-[-V,*+4(I-v)B·]dVx }' (B7)
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We split

2/l/(Y) == J o+4(I-v)J, (B8)

where J, is that portion of (B7) where A, A*, B, B* appear; Jo is the remainder. Observing again that VX' V" V:
and V,* vanish for cp == ±n we find

J o ==t (V, dV,*+V,* dV.-V, dV/-V: dV,) == (v.v,*-v,v:{. == o.

This leaves us with J I which we treat by integration by parts as follows:

J, == f. (-A dV,*+A* dV,+BdV:-B* dV.)

== t (V,* dA-V, dA*+V. dB*-V: dB).

(B9)

(BIO)

Let us now consider the special case k2 == 0, m l == O. This implies that A, B*, VX' V,* are even in cp while A*, B,
V:, V, are odd. Consequently J, == O. Altogether we have found that 021 == O. The same holds for 012' Returning
to (84) we may now write

It remains to determine 01" On. We have

JiOII/(I-V) == f. (VI., dex- V" dex.+ VI. dfl.- V 'xx dfJ)

/1022/(I-V) == f. (Va, dfJ- V 2, dfl.- Va dex.+ Va. dex).

Proceeding with (B 12) we make use of (2.13) and (2.13a) in particular and find

/loll/(l-v) == f, [(V,X:- V I,/2p) dex-(V,xx+ V I./2p) dP]

I f'== -4 [(I +cos cp-sin 2 cp)fl2-(1 +cos cp+sin 2 cp)ex 2] dcp
p -,

If'== -:2 _, [(I +cos cp) cos cp+sin 2 cp] dcp == -n.

As for (BI3) we observe that

f· 2 f'/l(u" +u22)/(I-v) == 2 (ex dfl.-ex. dll) == - - ex dlJ
-, p -.

== -2-f. cos2 cp/2 dcp == -2n

whence 022 == a". This, together with (BI4), (B6) and (BI I), leads to

repeated as (2.19) in Section 2.

(BI I)

(BI2)

(BI3)

(BI4)

(BI5)

(BI6)


